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Abstract

Abaoub- Shkheam Transform of partial derivative is derived, and its
applicability demonstrated using four different partial equations. In this
paper we find the particular solutions of these equations.

Keywords: Abaoub- Shkheam Transform- Partial Differential Equations.

1-introdaction:

For a long time, differential equations have played a central role in all
aspects of applied mathematics, and their importance has grown with the
advent of the computer. Thus, the investigation and analysis of differential
equations cruising in applications resulted in many deep mathematical
problems; thus, there are numerous techniques for solving differential
equations. The integral transform was widely used, and thus several words
on the theory and applications of integral transforms have been coined,
including Laplace, Fourier, Mellin, Hankel, and Sumudu, to name a few.
Ali. Abaoub, and Abigail. Shkheam Abaoub- Shkheam recently introduced
a new integral transform, dubbed the Abaoub- Shkheam transform, and used
it to solve ordinary and partial differential equations. Our purpose here is to
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show the applicability of this interesting new transformation and its effect
on solving such problems.

2- Definition and Derivations the Abaoub- Shkheam Transform of
Derivatives.

Definition1.2: Let f(t) be a function defined forall t > 0, the Q-
transform of f(t) is the function T (u, s) defined by T (w, s) = Q[f] =

J," f (ut) e dt (1)

provided the integral exists for some s, where s € (— ty, t,).

The original function f(t) in (1) is called the inverse transform or inverse
of T(u,s), and is denoted by f(t) = Q T (u,s)}.

If we substitute ut = y, then equation (1) becomes,

17 1
QA= Tws) =+ [ [P e dy @
0

To obtain Abaoub- Shkheam transform of partial derivatives we use
integration by parts as follows:

[af(x t)l ] af(x t, u) —t

) Pof(x,t,u) — p 1 [P -t
hm] —es dt = llm f(x, t)es |0 +—f es f(x t,u)dt
p—o J, ot s Jo

1 1
=——v(x,0) +—V(x,s,u)
u us

Thus Q [af(x 1)

] = —%v(x, 0) +iV(x,S,u) €)

To find Q [a f(x. t)] let af(x 9 = g(x,t), then by using Eq. (3) we have:

Q[59) = o[Z2Y) = g[g(x, 0] - g(x. 1)

at2 ot
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f(xt)] _ V(xs, 1 a
Qo] =1 L p(x,0) -2 (x,0) (&)

We can easily extend this result to the nth partial derivative by using
mathematical induction.

Now, we assume the f(x,t) is piecewise continuous and is of exponential
order. Then,

laf(x t)l f af(x t, u) —t

u2s2

oo —t
Using the Leibniz’ rule Q [af(x t)] aX fo es f(x,u,t)dt

of(x,t)

Thus Q[ ] = V(xu,5) (5)

92f(x,t)

Also we can find Q [ 22 V(x,u,s) (6)

o™ f(x, t)] _

In summary Q [ —V(x u,s) (7)

dxm

3 -Partial Differential Equations.

Now to illustrate the method we consider the general linear partial integral
differential equation

lOlatl+Z lal+cu+f(xt)—0

Applying a Abaoub- Shkheam transformation to Equation 2, we get

< ol olu
2. aiQ ot +) b0 o
i=0 i=0

l +cQul +Q[f (x, )] = 0

Using (3)and (4), we get
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o V(% u,s) 1o v*(x,0) 5 diV(x,u,s)
$y Yenn 151 060 S dvn

. ulst  uly (us)i-k-1 Podxt + Vi ws)
i=0 k=0 =
+f(x,0) =0
Where Vix,u,s) = Qu(x,t)] ,f(x,u,s) = Q[f(x, ).

4-Solution of Partial Differential Equations

In this section, we solve first- order partial differential equations and
second- order partial differential equations, as well as wave equations, heat
equations, Laplace's equations, and Telegraphers equations. Fundamental
equations are found in many branches of mathematics. in physics, applied
mathematics, and engineering.

Example 4.1.

Find the solution of the first order initial value problem:

U, (x,t) — 2up(x, t) = ulx, t),x > 0,t >0, (8)

With the initial conditions

u(x,0) = e=3% u(0,t) =) e~ 2t

Taking Abaoub- Shkheam transform of Eq. (8), we have
2 2

V'(ix,u,s) ——V(x,s,u) + —v(x,0) = V(x,u,s)
us u

Where V(x, u, s) is Abaoub- Shkheam transform of u(x,t).
By applying the initial condition, we get

2 2
V'(x,u,s)— [— + 1] V(x,s,u) = ——e3*
us u

This is the linear ordinary differential equation, it has the integration factor
F = e—f(%+1)dx _ e—(%+1)x

S —3x+
2us+1 € ¢ (9)
S

Now Q[u(0,)] =V(0,u,s )=0Q[e ] =—— (10)

- 2us+1

Therefore, V(x,s,u) =

Compare (10) in (9) ,we get c=0
Applying inverse Abaoub- Shkheam transform on both sides
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— S —-3x
Vixsu) = 2us+1°
ulx,s,u) = Q [V(x,s,u)]=0Q1! [Zuss+ 1] e 3% = g 23
u(x,s,u) = e ?te™3*
Example 4.2.
Let's consider the wave equation :
Upp — Uy = 0 O0<x<m ,t=>0 (11)

With the initial conditions:
u(0,t) =0 ,u;(x,0) =0 ,u(m,t) =0, u(x,0) = sinx

Taking Abaoub- Shkheam transform of Eq. (11), we have
V(x,s,u) 1 ov

UZSZ - @v(x, O) - E(xl O) - V"(X' u, S) =0
V(x,s,u 1
¥ ———sinx —V"(x,u,s) =0
u?s? uzs
1
V"(x,u,s) — 252 V(x,s,u) = —ﬁsinx
1 1

V(x,s,u) = cieus” + cyeus” — —=sinx  (12)

Now Qlu (0,)] =V (0,u,s) =0 (13)
Qu(m, )] =V(m,u,s )=0 (14)
Using(13) and (14)in (12) we get,

ci+c, =0 (15

1 1
And crews” +ceus" =0 (16)
Solving(15) and (16) we get,
c1=¢,=0
S .
V(x,u,s) = — o Sinx a7

Taking inverse Abaoub- Shkheam transform in(17) we get,

u(x,t) = costsinx

71 VThe Twenty Issue - October 2022\




AAAN

Example 4. 3.
Let's consider the homogeneous heat equation in one dimension in a
normalized form:

U = Uy, u(x,0) = sin?x, u(0,t) =u(l,t) =0 (18)
With the initial conditions:
u(x,0) =0 ,u(mt)=0
Taking Abaoub- Shkheam transform of Eq. (18), we have

1 1
—V(x,s,u) ——v(x,0) =V"(x,u,s)
us u

1 1 =
V"(x,s,u) =—V(x,s,u) ——sin—x
us u l

1 T
V'(x,s,u) ——V(x,s,u) = ——sin—x
us u l

1 1
—X =[x I2s 3
—_ us us ———Sln— 1
V(x,s,u) =ce + cye + —Esinx (19)

Now Qlu (0,)] =V (0,u,s) =0 (20)
QuL,]l=Vvl,us )=0 (21)
Using(20) and (21)in (19) we get,

sin=x (22)

usm2+12 l

V(x,s,u) = —

Taking inverse Abaoub- Shkheam transform in(22) we get,

—n? .
u(x,t) = ezt sinx.
Example 4.4.

Let's consider the homogeneous Laplace equation:
Upy + Uy =0, u(x,0) =0,u;(x,0) =cosx,x,t >0 (23)

Taking Abaoub- Shkheam transform of Eq. (23), we have
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) V(x,s,u) 1 ov
vV (x,s,u) +W—%U(J€,O) —E(X,O) =0

V(x,s,u)
V'(x,s,u) + —— 5 = CO0sX
u?s
This is the second-order ordinary differential equation have the particular

solution in the form:

2.2 2.2
cosx cosx u?s®cosx _ u®s?cosx
Vix s u) = = = = 24
(x,5,) 2’u2152 —1=u2152 —1+u?s? u?s2-1 (24)

Taking inverse Abaoub- Shkheam transform in(24) we get

u(x, t)=sinh t cos x.

Example 4.5.
Let's consider the telegraphers equation:
Ut (%, 1) + 2au(x,t) = a?uy,(x,) 0<x<1 .t>0 (25)

With the initial conditions:
u(x,0) = cosx, u(x,0)=0
Taking Abaoub- Shkheam transform of Eq. (25), we have
V(x,s,u) 1 ov 1 1
_—— @v(x, 0) — Fr (x,0) + Za[E V(x,s,u) — av(x, 0)]

= a?V"(x,s,u)

u2s?

V(x,s, 1 1 2
V" (x,s,u) = ;xz—zzu)+ 20—V (x,5,u) — [-cosx + ?acosx]
2a

u

1 1
o2V (x,s,u) — [ + 20(—] V(x,s,u) = —[—=+—]cosx
us u?s

uzs?

This is the second-order ordinary differential equation have the particular
solution in the form:

1 1 1 20
_ —lggtgleosx  —[gotTrlcosx  _[s+2aus?]cosx
V(x,s,u) = o 11 7=, 1 1 T~ 2202
a?D —[ 5 2+20(—] —-a —[ 2 2+2°‘_] “ufstat—[1+2aus]
u2s us ucs us
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_ [s+2aus®]cosx _ s aus?
T [1+aus]z [[1+(xus] [1+aus]2] cos X (26)

Taking inverse Abaoub- Shkheam transform in(26) we get

u(x, t)=(1 + at)e ** cos x.
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