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Abstract
In this paper, we study a system of a non-strictly hyperbolic of conservation
laws when viscosity is present. We do not use classical solution. We construct
a shadow wave solution (see [9]) for Riemann type initial data where the first
component develops rarefaction, which was partially determined in [5] using
vanishing viscosity method. For shadow wave approach, we used only convex
entropy and its corresponding entropy.
1-Introduction:

Conservation laws in applications are sometimes not strictly hyperbolic.
A non-strictly hyperbolic system of conservation laws when viscosity is
present and when viscosity is zero, which has been studied in [5]. It was
partially determined as vanishing viscosity limit in [5].
The systems of nonlinear partial differential equations of the form
@)e + By e =5 W J =12, (1)
where € > 0 is a small parameters with initial condition of the following

form
ui(x,0) = ujp(x), j=12,....n (2)
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This system (1) is introduced in [3]. It is shown there that the system (1) can
be linearized by using a generalized Hopf—Cole transformation, this in turn
gives explicit formula for u;,i = 1,2, ... n.

It is well-known that the corresponding inviscid partial differential
equations system

W)e + X, (1, =0, j=12,...n 3)
is not strictly hyperbolic as it has repeated eigenvalues, i.e., 4; =
(ug, uy, e uy) =uy, fori =1,2, ... ... n.. The above inviscid system does

not have smooth global solution, even if the initial data (2) is smooth.
Additional conditions are required to pick the unique physical solution.
Vanishing viscosity method is one of ways to select the physical weak
solution of (3). That is, the solution of the inviscid system is constructed as
the limit goes to zero of solutions u;(x,t) of (1), with suitable initial and
boundary conditions.

For n = 4 of the system (1), with Riemann type initial data for the case
where the first component develops a shock. With u =u;, v =u,, w =
us and z = u,, with coefficient of viscosity being a generalized constant y,
then the system (1), becomes

u?y _vy _ Y
ut"‘(?)x_guxxv vt+(uv)x_ vax
v? _Y _Y
Wt"‘(?"‘uW)x—gWxx, zp+ (vw +uz), = 7 Zxx

(4)
with initial data
(u(x,0),v(x,0),w(x,0),z(x,0))= (ug, vo,Wo, Zg )-

In [5], the vanishing viscosity limit for Riemann type initial data is studied
for the case n = 4. The main purpose of this paper is to solve the Riemann
type initial data when u develops rarefaction(u, < u,) for the components w
and z of the system (4). We construct a shadow wave solution (see [9]) for
Riemann type initial data where the first component develops rarefaction,
which was partially determined in [5] using vanishing viscosity method. The
shadow waves are defined by nets of piecewise constant functions for time
variable t fixed parameterized by some small parameter € > 0 and bounded in

Lioc(R).

( Al Qortas Journal is Reviewed Scientific Joumal 20



Generalized shadow waves solution to a system of Riemann type initial data \

2-General formulas and entropy conditions:
Definition 1. Let U, and U|,—, be given by

U, (x,t)
Uy, x < C(t) - ae(t) — X1
Upe, c()—ac(t) —x<x<c(t) )
Uze, c(t) < x< c(t)—b(t) —xy ’
kUl ’ x> c(t) - be(t) — X2,¢
Ult=o = {Z(l): i i 8 (6)

Here x, ., x,.~¢,where Uy, Uy, U,.and U; are constants that are
inR™, (X,t) ER x (0, ©)and f: R™— R is smooth function. The line x =
c(t) has its initial point at origin. Assume that the distributional limit of
U, (x,t) exists and equals to U. If (U,); + f(U,), tends to 0, in the sense of
distribution, then we say U is a Shadow wave solution to the conservation law

W)+ fU)x=0 (7)
with initial data

U(x,0) = Ul¢=o-
Definition 2. Let U, be given by
Uy, x<(c—ay)t
_JUse, (c—agt<x<ct
Us (,1) = Upe, ct<x< (c+b)t (®)
Ui, x> (c+ bt
Then
atf(Us) ~—C (f(Ul) - f(U0)6 - C(asf(Ul,e) + bef(UZ,e))t5,
+(a£f(U1,£) + bef(UZ,s))6 (9)

axg(Us) ~ (Q(Ul) - g(UO)6 - (asg(Ul,s) + beg(UZ,e))tal

is a special case of (5) which is general enough for solving Riemann
problem (2), We will call it the simple shadow wave.

Definition 3. Let n(U) be a convex entropy with the entropy flux q(U) for
the system (7). Then U, is said to be entropy admissible if

T
lirré infj f n(U.)0.0dxdt + q(U,)d,,0 + fn(Ug(x, t))dx >0
&> R70 R
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for all non-negative test functions @ € C,° (Rx (0, T)).
The above definition is equivalent to:

limsup (=¢ (n(U1) = n(Uo)) + ¢ (n(Uz,6) + (V1)) + q(U) —

q(Uy) <0,
and

lim(—c £ (n(Une) = n(Use) ) + & ((a(Uze) —a(Ur)) = 0,
where here a,, b.~¢.
Vanishing viscosity limit -the rarefaction case.
By vanishing viscosity limit, see [5] the limit (u, v) for the rarefaction case
of u is given by

(ug, vo), x < upt
(u,v) = G,O), Ut < x < upt (10)
(uq, vq), X > upt

With the above definitions, we have the following theorem.
3-Shadow wave solution for Riemann type initial data:
Theorem 1. The system (4) has shadow wave solution when u develops

rarefaction uy, < u,, for the components w and z is given by
2 2

_ 0.5 V1
Wt_WO+7 x=u0t_7

Zt = Zg + u0W0t5x=u0 t— u1W1t6x=u1 t + Zq
with initial data
Ug, Vg, Wo,Zg, X >0

(u(x,0), v(x,0), w(x,0), z(x,0) ) = {ul, v, Wy,2;, x <0

Proof: We suppose the following converges for (u, v, w, z) for the possible
shadow wave approximation in which solutions taken for the components u
and v is vanishing viscosity limit.

( (uO' Vo, WO'ZO) ’ x < (uO - E)t

t0x=u, ¢ T W1

(ug — &)t < x <wuypt

X
(Ug, Ve, W, ) (x, )= < (;,0 0, 0), Upt < x < uyt

Ve Wize Zvpe
(uz,g;\/g; NG \/E)' wut < x < (uy + et

\ (Uq, vy, Wy, 2 ), x < (u; + et
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We will use the formula of the simple shadow wave (9), under the assumption,

fWil= 19U = =0(3), =12
then, we have the following formula for distributional derivatives.
atf(Ue) ~—=C (f(Ul) - f(UO)(S - C(aef(Ul,s) + bef(UZ,s))t(S’
+(asf(U1,e) + bef(UZ,e))6
0,9 (U:) = (g(Uy) — g(Up)6 — (azg(Use) +
beg(Uze))ts’ (12)

Applying the above formula (12) with assume thata, =€, b, =0, ¢ =
ug, near the discontinuity line x=uytanda, =0, b, = €, ¢ = uy, near
the discontinuity line x= u, t, then we get

we ~ (UgWo + W16 )Brmuy ¢ —UgWy,et8xmyy ¢ + (—uywy +

W2,$)6x=u1 t— ulwz,eté‘;c:ul t
Uz ‘Ug vlz
€ ,€
ax (7 + uSW;;‘) = (- 7 + u0W0> 6x=u0 ¢+ <— T + uOWL&-) t6,,c=u0 ¢

2 2
120 UZ,E
+ (_ 7 + u1W1) 6x=u1 t + <_ _2 + U1W2,£) t69’c=u1 t
The sign,, =,, simple means a convergence to zero as € — 0.

2
Since the relation w; + d, (vf + ugwg) ~ 0, then that implies

vg vi

Vi =Vpe =0, W= o W2e= 775
Now we calculate the distributional limit of w,. Let @ be a real valued test
function supported in R x (0, o), multiplying with a test function @ in the

equation for component w in (4) and integrating over R x (0, T), we have
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(00} oo
.f J. we(x, t)D(x,t) dx dt
0 —00
© ~(ug—e)t
=f f we(x,t)D(x, t) dx dt
0 —00

o ~Ugt
+ f f we(x, t)0(x,t) dx dt
0

ug—e&)t

o ~(uqite)t
+ f f we(x,t)D(x,t) dx dt
0 u

1t
+f j- we(x, t)B(x, t) dx dt (13)
0 J(ui+e)t
For the left hand side, we have

fmfmwg(x, )B(x, t) dx dt = ijjmwxx(x, HB(x, t) dxdt  (14)
0 —0o 2 0 —00

Using integration by parts twice on the right hand side of the equation (5),
we have

jm]mwg(x, )B(x, t) dx dt = Zfoojww(x, DB(x, t) e dx dt . (15)
0 —00 2 0 -0

By the assumption
-1

sup | w(x, t)|=o0 (Z) (16)

XER,0<x<00 2

The right hand side of equation (15) implies
limj J we(x, t)D(x,t) dx dt = J f w(x, t)0(x,t) dx dt
0 —0o0 0 —00

£-0

So, that
limJ f we(x, t)D(x,t)dxdt =0
0 —00

£-0
By (14), the above limit tends to zero as g tends to zero.
After above calculations, the equation (13) implies that
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(00] (o]
f f we(x, t)D(x,t) dx dt
0 —00

© r(ug—et
=f f wo@(x,t) dx dt

Ugt
f f —Q)(x t) dx dt
u —e)t
(ur+e)t UZ
+f f 2 0(x, t) dx dt
0 Juyt 2¢e

+f j w; B(x,t)dxdt =0
0 (uq+e)t

As ¢ tends to 0, we get the formula for w in (11).
The similar analysis as in w for the component z, then we get

~ !
ze = (upzo + Zl,e)5x=uo t — UoZ1,et0x=yyt T+

li
(_ulzl + Zz,s)6x=u1 t u122,£t6x=u1 t

ax(vewe + uszs) ~ (_UOWO + uOZO)6x=u0 t T € (_1715_\;/15 +

£2
UoZ1,e ts!
€ x=upgt

V2, eWa,e UiZpe
+(—v1Wy + U121)0xy, ¢ + € <_ 7 T - t8x—u, ¢
&2
Since from the above calculation for w, we had v, ., v, = 0. So

ax(vsws + uszs) = (_UOWO + uOZO)6x=u0 tt u021,£t69’c=u0 t
+(viwq — u121)6x=u1 ¢ T u122,£t69’c=u1 t
The relation z; + 9, (v.w, + u.z.) = 0, then that implies

Z1e = VgWy, Zp e = —VU1W1.

With the same calculation as in w, for z., we get
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lim J:o J._o:ozs(x, )D(x,t) dx dt = j:o f_o:oz(x, )d(x, t)dxdt (17)

-0

Then we have

J. f Ze(x, t)D(x,t) dx dt
0 — 00
o ~(ug—e)t
= f f Zo@(x,t) dx dt
0 —00

co 'Ll.ot
+ f f voWy D(x, t) dx dt
0

Ug—&)t

© ~(uite)t
+ j J —vwy O(x, t) dx dt
0

u,t

+f f 71 0(x, t)dxdt =0
0 (u+e)t

As ¢ tends to 0, we get the formula for z in (11).

For general type Riemann initial data, we used shadow wave approach to
construct solution. We note that shadow wave solution for the component w
agrees with the vanishing viscosity limit but the component z does not agree
for the above special type Riemann initial data. For shadow wave approach
we used only convex entropy and its corresponding entropy flux.
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