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Abstract  

      This paper introduces a new generalization of the Lindley distribution 

introduced by Lindley (1958), using the basic idea of Pappas et al. (2012), 

and along the lines of Marshall and Olkin (1997). The new distribution is a 

compound of the Lindley and Logarithmic distributions. We refer to the new 

model as the Logarithmic-Lindley (Log-L) distribution. This model is capable 

of modeling various shapes of aging and failure criteria. The properties of the 

new model are discussed and the maximum likelihood, maximum product 

spacings and least square estimation methods are used to evaluate the 

parameters involved. Explicit expressions are derived for the moments and 

examine the order statistics. Finally, the usefulness of the new model for 

modeling reliability data is illustrated using a two real data sets with 

simulation study. 
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likelihood estimation; maximum product spacing's estimates; least square 

estimators. 

1 Introduction 

       Lifetime distribution represents an attempt to describe, mathematically, 

the length of the life of systems or devices. Lifetime distributions are most 

frequently used in many fields as medicine, engineering ...etc. Many 

parametric models such as exponential, gamma and Weibull have been 

frequently used in statistical literature to analyze lifetime data. But there is no 

clear motivation for the gamma and Weibull distributions. They only have 

more general mathematical closed form than the exponential distribution with 

one additional parameter. 

       Recently, the one parameter Lindley distribution has attracted the re-

searchers for its use in modeling lifetime data. It has been observed in several 

papers that this distribution has performed excellently. The Lindley distrib-

ution was originally proposed by Lindley in 1958 in the context of Bayesian 

statistics, as a counter example of fiducial statistics. One can glean it as a 

mixture of exponential(𝜃) and gamma (2, 𝜃). 

      Some of the advances in the literature of Lindley distribution are given by 

Ghitany et al. (2011) who has introduced a two-parameter weighted Lindley 

distribution and has pointed that Lindley distribution is particularly useful in 

modeling biological data from mortality studies. Mahmoudi et al. (2010) have 

proposed generalized Poisson Lindley distribution. Bak- ouch et al. (2012) 

have come up with extended Lindley (EL) distribution, Adamidis and Loukas 

(1998) have introduced exponential geometric (EG) distribution. Shanker et 

al. (2013) have introduced a two-parameter Lindley distribution. Zakerzadeh 

et al. (2012) have proposed a new two parameter lifetime distribution: model 

and properties. M.K. Hassan (2008) has introduced a convolution of Lindley 

distribution. Ghitany et al. (2013) worked on the estimation of the reliability 

of a stress-strength system from power Lindley distribution. Elbatal et al. 

(2013) has also proposed a new generalized Lindley distribution. 

Definition 1, A random variable X is said to have the Lindley distribution 

with parameter (𝜃) if its probability density function (pdf) is defined as 

                     g (x) =  
𝜃2

𝜃 + 1
(1 +  𝜒)𝑒−𝜃𝜒, 𝜒 > 0, 𝜃 > 0                             (1) 
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while the corresponding survival, or reliability, function is given by 

                      G (𝑥) =
𝜃 + 1 + 𝜃𝑥

𝜃
𝑒−𝜃𝑥, 𝑥    > 0.                                      (2) 

 

also, the hazard rate function, denoted by 𝑟(𝑥), is given by 

                            𝑟(𝑥) =
𝜃2(1 + 𝑥)

𝜃 + 1 + 𝜃𝑥
 , 𝑥 > 0.                                                (3) 

More details about the Lindley distribution can be found in Ghitany et al. 

(2008). 

In the context of reliability and survival analysis, Marshall and Olkin (1997) 

proposed a transformation of a distribution 𝐺 (𝑥; 𝜃) that introduces a new 

parameter 𝛼 > 0. This transformation is defined through the cumulative 

distribution function (cdf). 

              𝑓(𝑥; 𝜃, 𝛼)       =
𝐺(𝑥; 𝜃)

𝐺(𝑥; 𝜃) + 𝛼𝐺(𝑥; 𝜃)
.                                             (4) 

The interpretation of the parameter 𝛼 is given in Marshall and Olkin (1997) 

in terms of the behavior of the ratio of hazard rates of G and F. This ratio is 

increasing in x for 𝛼 ≥ 1 and decreasing in x for 0 < 𝛼 < 1. This 

transformation is then proposed for the Exponential and Weibull distribution 

in Marshall and Olkin (1997) in order to generate more flexible models for 

lifetime data. Clearly, for 𝛼 = 1, F and G coincide. 

A lot of papers had been published by using Marshall-Olkin (M-O) trans-

formation given in (4). Alice and Jose (2003) introduced M-O extended semi-

Pareto model and studied its geometric extreme stability. Semi-Weibull 

distribution and generalized Weibull distributions are considered by Alice 

and Jose (2005). M-O extended Pareto distribution was introduced by Ghi-

tany (2005). Ristic et al. (2007) introduced and studied the M-O gamma 

distribution. Ghitany et al. (2007) proposed the M-O extended Lomax dis-

tribution to apply with censored data. The M-O beta distribution as an 

extension of the basic distribution with four parameters was presented by 

Jose et al. (2009). Gomez-Deniz (2010) presented a new generalization of the 

geometric distribution using the M-O scheme. Garcia et al. (2010) define a 

generalized normal distribution by applying this transformation to a normal 

distribution G. 
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In 2012, Pappas et al. introduced a new generalization which is derived along 

the lines of Marshall and Olkin (1997). Accordingly, starting with a survival 

function𝐺(𝑥), then the usual device of adding a new parameter results in 

another survival function 𝐹(𝑥) defined by 

                 𝐹(𝑥) =
ln[ 1 − (1 − 𝑝)𝐺(𝑥)]

ln(𝑝)
; 𝑥 ∈ ℝ, 𝑝 > 0                             (5) 

and when 𝑝 → 1 the distribution reduces to the base distribution 𝐺(x). If 

𝑓(𝑥) and ℎ(𝑥) are the pdf and hazard rate function corresponding to 𝐹(𝑥), 

then 

             𝑓(𝑥) =
(𝑝 − 1) 𝑔(𝑥)

[ 1 − (1 − p)G(x)]ln (𝑝)
; 𝑥 ∈  ℝ, 𝑝 > 0                         (6) 

and 

                  ℎ(𝑥) =
(𝑝 − 1)𝐺(𝑥)𝑟(𝑥)

 [ 1 − (1 − p)G(x)] ln [1 − (1 − 𝑝)𝐺(𝑥)]
,                (7) 

where h(x) is the hazard rate corresponding to f(x). It is worth mentioning 

that Al-Zahrani and Sagor (2014) followed this idea to provide the Lomax-

Logarithmic distribution. The aim of this paper is to introduce a new 

generalization of Lindley (1958) distribution. This generalization is flexible 

enough to model different types of lifetime data having different forms of 

failure rate. The new model can accommodate both decreasing and increasing 

failure rates as its antecessors, as well as unimodal and bathtub shaped failure 

rates. 

The rest of this paper will cover the following topics adequately: Section 2 

introduces the pdf and the survival function of the Logarithmic-Lindley 

distribution, then gives an interpretation of the new model. We investigate 

the reliability analysis of the new model via Section 3 which includes the 

hazard rate function with its shapes, the cumulative hazard rate function and 

the mean residual lifetime. Section 4 presents the statistical properties 

including the moments, moment generating function and quantile function. 

Section 5 demonstrates the distribution of order statistics. Section 6 intro-

duces the Lorenz and Bonferroni curves as measures of inequality besides the 

Renyi entropy as an important measure of uncertainty. Section 7 states the 

different methods of parameter estimation such as the maximum likelihood 
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estimation method, maximum product spacing estimates and least square 

estimates. Section 8 provides two applications illustrating the performance of 

the new proposed model that are applied on different real data sets. Finally, 

Section 9 presents some conclusions. 

2 A Lindley Extension Model 

In the following, Lindley distribution is extended by adding a new shape 

parameter, 𝑝 > 0, using Equations (5) through (7). Now, substituting (2) into 

(5) and doing the necessary simplifications gives the survival function of the 

Logarithmic-Lindley (Log-L) distribution as 

                𝐹(𝑥) =  
ln [1 − (1 − p)(

1 + 𝜃 + 𝜃𝑥
𝜃 + 1 )𝑒−𝜃𝑥]

ln(𝑝)
;   𝑥 > 0,                 (8) 

where 𝜃> 0 is a scale parameter and 𝑝 > 0 is a shape parameter. Then the 

pdf corresponding to (8) is readily found to be 

𝑓(𝑥) =
𝜃2(𝑝 − 1)

(𝜃 + 1) ln(𝑝)
 [

(1 + 𝑥)𝑒−𝜃𝑥

1 − (1 − 𝑝) (
1 + 𝜃 + 𝜃𝑥

𝜃 + 1
) 𝑒−𝜃𝑥

] ; 𝑥 > 0, 𝜃, 𝑝

> 0.                                                                                                (9) 

Note that the Logarithmic-Lindley distribution is an extended model to 

analyze more complex data and it generalizes some of the widely used 

distributions. The Lindley distribution is clearly a special case when p → 1. 

INTERPRETATION For 𝑝 ∈(0,1), the pdf given by (9) can be obtained as a 

compound of the Logarithmic and the Lindley distributions. According to 

Barlow and Proschan (1996) and Arnold et al. (1992), suppose that 𝑋1,𝑋2, 

...,𝑋𝑦 are Y iid (independent and identically distributed) lifetime random 

variables in a series system each with pdf (1), and let Y be a random 

variable distributed according to the Logarithimc distribution with 

probability mass function (pmf) defined as 

𝑝(𝑌 = 𝑦) =
−(1 − 𝑝)𝑦

𝑦𝑙𝑛𝑝
; 𝑦 ∈ ℕ, 𝑝 ∈ (0,1).  

Now, the conditional distribution function of (X | Y) is given by 

𝑓(𝑥 ∣ 𝑦) = 𝑦𝑔(𝑥)[𝐺(𝑥)]
𝑦−1

=
𝑦𝜃2(1 + 𝑥)

1 + 𝜃 + 𝜃2
 (

1 + 𝜃 + 𝜃𝑥

1 + 𝜃
 𝑒−𝜃𝑥)𝑦 , 
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where 𝑔(𝑥) and 𝐺(𝑥) are the pdf and the survival function corresponding to 

Lindley distribution and given by (1) and (2), respectively. 

Then, the joint distribution of the random variables X and Y, denoted by f 

(x, y), is obtained as 

𝑓(𝑥, 𝑦) = (𝑥 ∣ 𝑦). 𝑝(𝑌 = 𝑝)

=
−𝜃2(1 + 𝑥)

(1 + 𝜃 + 𝜃𝑥) ln(𝑝)
[(1 − 𝑝) (

1 + 𝜃 + 𝜃𝑥

1 + 𝜃
) 𝑒−𝜃𝑥]

𝑦

 

Hence, it can be found the marginal pdf of 𝑥  as follows 

    𝑓(𝑥) = ∑ 𝑓(𝑥, 𝑦)

∞

𝑦=1

=
−𝜃2(1 + 𝑥)

(1 + 𝜃 + 𝜃𝑥) ln(𝑝)
∑ [(1 − 𝑝) (

1 + 𝜃 + 𝜃𝑥

1 + 𝜃
) 𝑒−𝜃𝑥]

𝑦𝜃

𝑦=1

 

           =
−𝜃2(1 + 𝑥)

(1 + 𝜃 + 𝜃𝑥) ln(𝑝)
 [

(1 − 𝑝) (
1 + 𝜃 + 𝜃𝑥

1 + 𝜃
) 𝑒−𝜃𝑥

1 − (1 − 𝑝) (
1 + 𝜃 + 𝜃𝑥

1 + 𝜃 ) 𝑒−𝜃𝑥
]

𝑦

 

=
𝜃2(𝑝 − 1)

(1 + 𝜃) ln(𝑝)
 [

(1 + 𝑥)𝑒−𝜃𝑥

1 − (1 − 𝑝) (
1 + 𝜃 + 𝜃𝑥

𝜃 + 1 ) 𝑒−𝜃𝑥
] , 

which is the pdf of the Log-L distribution given by (1). 

Figure 1 illustrates some of the possible shapes of the pdf of the logarithmic-

Lindley distribution for different values of the parameters 𝜃  and 𝑝 chosen 

from the ranges specified in equation (9). 
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FIGURE 1: The density function of the Logarithmic-Lindley distribution. 

3 Reliability Analysis  

In this section, we present the hazard rate function with its different shapes, 

the cumulative hazard rate function and the mean residual lifetime for the 

Logarithmic-Lindley distribution. 

3.1 The Hazard Rate Function 

Let 𝑋 be the lifetime of a device (or a component in a system). Suppose a 

component follow that 𝑋 has a pdf as in (9). One of the most important 

characteristics of 𝑋 is its hazard rate function ℎ(x) defined by 

ℎ(𝑥) = lim
∆𝑥→0

𝑃𝑟(𝑥 < 𝑋 < 𝑥 + ∆𝑥|X > x) 

∆𝑥
= lim

∆𝑥→0

𝐹(𝑥 + ∆𝑥) − 𝐹(𝑥)

∆𝑥. 𝑅(𝑥)

=
𝑓(𝑥)

𝑅(𝑥)
,    

which provides information about a small interval after time x(x + ∆x). 

Using the previous definition or by substituting (2) and (3) into (7), the 

hazard rate function of a random variable X∼Log − L(θ, p)is given by 
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                              ℎ(𝑥)

=
(𝑝 − 1) (

𝜃2

𝜃 + 1) (1 + 𝑥)𝑒−𝜃𝑥

[1 − (1 − 𝑝) (
𝜃 + 1 + 𝜃𝑥

𝜃 + 1 ) 𝑒−𝜃𝑥] ln[1 − (1 − 𝑝)(
𝜃 + 1 + 𝜃𝑥

𝜃 + 1 )𝑒−𝜃𝑥]
  

By taking the limit of (10) when x → 0and when x → ∞ as follows 

lim
𝑥→0

ℎ(𝑥) =
𝑝 − 1

𝑝 ln(𝑝)
×

𝜃2

𝜃 + 1
=

𝑝 − 1

𝑝 ln(𝑝)
 𝑙𝑖𝑚

𝑥→0
𝑟(𝑥),  

lim
𝑥→∞

ℎ(𝑥) = lim
𝑥→∞

𝑟(𝑥) 

it follows from (10) that 

                                           
𝑝 − 1

𝑝 ln(𝑝)
 𝑟(𝑥) ≤ ℎ(𝑥)

≤ 𝑟(𝑥); 𝑥 > 0, 𝑝 ≥ 1,  

and 

           𝑟(𝑥) ≤ ℎ(𝑥) ≤
𝑝 − 1

𝑝 ln(𝑝)
𝑟(𝑥); 𝑥 > 0, 𝑝 ∈ (0,1). 

Hence, using the ratio 
h(x)

r(x)
, 𝑥  > 0, it can be shown that 

ℎ(𝑥)

𝑟(𝑥)
 is increasing 

for 𝑝 ≥  1 and decreasing for 𝑝 ∈  (0,1). Figure 2 illustrates the behavior of 

the hazard rate function of the Logarithmic-Lindley distribution at different 

values of the parameters involved. 
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FIGURE 2: Increasing, decreasing, upside down and bathtub shapes of the 

hazard rate function for the Log-L distribution. 

Therefore, the new distribution can accommodate both decreasing and 

increasing failure rates as its antecessors, as well as unimodal and bathtub 

shaped failure rates. 

 

3.2 The Cumulative Hazard Rate Function 

Many generalized models have been proposed in reliability literature through 

the relationship between the reliability function 𝐹(𝑥)  and its cumulative 

hazard rate function H(x) given by 𝐻(𝑥)  = — ln 𝐹  (𝑥) . Then, the 

cumulative hazard rate function of the Logarithmic-Lindley distribution is 

given by 

     𝐻(𝑥) = ln [ln(𝑝)] − ln [ln {1 − (1 − 𝑝) (
𝜃 + 1 + 𝜃𝑥

𝜃 + 1
) 𝑒−𝜃𝑥}]        (11) 

3.3 The Mean Residual Lifetime 

The additional lifetime given that the component has survived up to time 𝑥 is 

called the residual life function of the component, then the expectation of the 
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random variable Xx that represent the remaining lifetime is called the mean 

residual lifetime (MRL) and is given by 

   𝑚(𝑥) = 𝐸(𝑋 − 𝑥|𝑋 ≥ 𝑥) = {
1

𝐹(𝑥)
∫ 𝑡. 𝑓(𝑡)𝑑𝑡} − 𝑥}                          (12) 

∞

𝑥

 

While the hazard rate function ℎ(𝑥)  provides information about a small 

interval after time 𝑥 (𝑗𝑢𝑠𝑡 𝑎𝑓𝑡𝑒𝑟 𝑥), the MRL considers information about 

the whole interval after 𝑥 (𝑎𝑙𝑙 𝑎𝑓𝑡𝑒𝑟 𝑥). The MRL as well as the hazard rate 

function or the reliability function is very important as each of them can be 

used to characterize a unique corresponding lifetime distribution. 

     The MRL function 𝑚(𝑥) for Logarithmic-Lindley random variable can 

be derived in the following steps. 

Now, 

                            ∫ 𝑡. 𝑓(𝑡)𝑑𝑡
∞

𝑥

=
𝜃2(𝑝 − 1)

(𝜃 + 1) ln (𝑝)
∫

(𝑡 + 𝑡2)𝑒−𝜃𝑡

[1 − (1 − 𝑝) (1 +
𝜃𝑡

𝜃 + 1) 𝑒−𝜃𝑡]
𝑑𝑡              (13) 

∞

𝑥

 

Using the expansion (1 − 𝑧)−1 = ∑ 𝑧𝑖∞
𝑗=0 , |z| < 1, 𝑜𝑛𝑒 ℎ𝑎𝑠  

      [1 − (1 − 𝑝)(1 +
𝜃𝑡

𝜃 + 1
)𝑒−𝜃𝑡]

−1

= ∑(1 − 𝑝)𝑗

∞

𝑗=0

(1 +
𝜃𝑡

𝜃 + 1
) 𝑗𝑒−𝑗𝜃𝑡                      (14) 

Similarly, using the expansion (1 + 𝑏)𝑛 = ∑ (
𝑗
𝑖
) ,∞

𝑙=0  one can have 

               (1 +
𝜃 + 𝑡

𝜃 + 1

𝑗

) = ∑ (
𝑗
𝑖
) (

𝜃

𝜃 + 1
)𝑗−𝑖

∞

𝑖=0

 𝑡𝑗−𝑖                     (15) 

Hence, one can rewrite (14) as  
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   [1 − (1 − 𝑝)(1 +
𝜃𝑡

𝜃 + 1
)𝑒−𝜃𝑡]−1

=  ∑ ∑ (
𝑗
𝑖
) (1

∞

𝑗=0

∞

𝑖=0

− 𝑝)𝑗 (
𝜃

𝜃 + 1
)𝑗−𝑖 𝑡𝑗−𝑖𝑒−𝑗𝜃𝑡                       (16) 

Substitute (16) into (13) and do the necessary simplifications, one has 

                         ∫ 𝑡. 𝑓(𝑡)𝑑𝑡
∞

𝑥

=
𝜃2(𝑝 + 1)

(𝜃 + 1) ln(𝑝)
∑ ∑[(

𝑗
𝑖

∞

𝑗=0

)(1

∞

𝑖=0

− 𝑝)𝑗+1 (
𝜃

𝜃 + 1
)𝑗−1 ∫ (𝑡𝑗−𝑖+1

∞

𝑥

+ 𝑡𝑗−𝑖+2)𝑒−(𝑗+1) 𝜃𝑡,              (17) 

Evaluating the integral ∫ (𝑡𝑗−𝑖+1 + 𝑡𝑗−𝑖+2)𝑒−(𝑗+1)𝜃𝑡𝑑𝑡
∞

𝑥
  by using the 

substitution 𝑢 = 𝜃(𝑗 + 1), 

∫ (𝑡𝑗−𝑖+1 + 𝑡𝑗−𝑖+2)𝑒−(𝑗+1)𝜃𝑡𝑑𝑡
∞

𝑥

= ∫ 𝑡𝑗−𝑖+1 + 𝑒−(𝑗+1)𝜃𝑡
∞

𝑥

𝑑𝑡 + ∫ 𝑡𝑗−𝑖+2𝑒−(𝑗+1)𝜃𝑡
∞

𝑥

𝑑𝑡 

Then, using 

𝐴 = ∫ 𝑡𝑗−𝑖+1𝑒−(𝑗+1)𝜃𝑡𝑑𝑡
∞

𝑥

 

and      

𝐵 = ∫ 𝑡𝑗−𝑖+2𝑒−(𝑗+1)𝜃𝑡𝑑𝑡
∞

𝑥

 

Then, 

   𝐴 =
1

[𝜃(𝑗 + 1)]𝑗−𝑖+1 
 ∫ 𝑢𝑗−𝑖+1𝑒−𝑢

∞

𝜃(𝑗+1)𝑥

𝑑𝑢

=
𝑟(𝑗 − 𝑖 + 2, 𝜃(𝑗 + 1)𝑥)

[𝜃(𝑗 + 1)]𝑗−𝑖+1
                               (18) 
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Also, 

𝐵 =
1

[𝜃(𝑗 + 1)]𝑗−𝑖+2
 ∫ 𝑢𝑗−𝑖+2𝑒−𝑢

∞

𝜃(𝑗+1)𝑥

𝑑𝑢 =
𝑟(𝑗 − 𝑖 + 3, 𝜃(𝑗 + 1)𝑥)

[𝜃(𝑗 + 1)]𝑗−𝑖+2
,

(19) 

where r(.,.) is the higher incomplete gamma function, and defined by 

𝑟(𝑎, 𝑏) = ∫ 𝑥𝑎−1𝑒−𝑥𝑑𝑥.
∞

𝑏
 

Substitute (18) and (19) into (17) and doing the necessary simplifications, 

gives 

           ∫ 𝑡. 𝑓(𝑡)𝑑𝑡
∞

𝑥

=
(𝑝 − 1)

ln(𝑝)
 

× ∑ ∑ 𝑖𝐶𝑗[𝜃(𝑗 + 1)Г(𝑗 − 𝑖 + 2, 𝜃(𝑗 + 1)𝑥) + Г(𝑗 − 𝑖

∞

𝑗=0

∞

𝑖=0

+ 3, 𝜃(𝑗 + 1)𝑥)],                    (20) 

where ∑ ∑ 𝑖𝐶𝑗 ∞
𝑗=0

𝑗
𝑖=0 is a constant term, and denoted by 

∑ ∑ 𝑖𝐶𝑗 = ∑ ∑[
(

𝑗
𝑖
) (1 − 𝑝)𝑗(1 + 𝜃)𝑖−𝑗−1

(𝑗 + 1)𝑗−𝑖+3

∞

𝑗=0

∞

𝑖=0

∞

𝑗=0

∞

𝑖=0

] 

Finally, collecting all of the above evaluations the MRL of the Logarithmic- 

Lindley distribution can be written as 

𝑚(𝑥) =
(𝑝 − 1)

ln[1 − (1 − 𝑝)(
𝜃 + 1 + 𝜃𝑥

𝜃 + 1 )𝑒−𝜃𝑥]

× ∑ ∑{𝑖𝐶𝑗   [𝜃(𝑗 + 1)Г(𝑗 − 𝑖 + 2, 𝜃(𝑗 + 1)𝑥)

∞

𝑗=0

∞

𝑖=0

+ Г(𝑗 − 𝑖 + 3, 𝜃(𝑗 + 1)𝑥)]} − 𝑥                             (21) 

4 Statistical Properties  

This section investigates the statistical properties of the Logarithmic-Lindley 

distribution such as the moments, the moment generating function, the 

quantiles and the median. 
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4.1 Moments 

The 𝑟𝑡ℎnon-central moment of the Logarithmic-Lindley distribution is given 

by 

                                 𝐸(𝑋𝑟) = �́�𝑟

=
𝜃2(𝑝 − 1)

(𝜃 + 1) ln 𝑝
∫

(𝑥𝑟 + 𝑥𝑟+1)𝑒−𝜃𝑥

[1 − (1 − 𝑝) (1 +
𝜃𝑥

𝜃 + 1) 𝑒−𝜃𝑥]

∞

0

𝑑𝑥,        𝑟

= 1,2, …                         (22) 

Using the expansion (1−  )−1 =  ∑ 𝑧𝑗∞
𝑗=0   , 𝑜𝑛𝑒 ℎ𝑎𝑠 

[1 − (1 − 𝑝) (1 +
𝜃𝑥

(𝜃 + 1)
) 𝑒−𝜃𝑥)−1

= ∑(1 − 𝑝)𝑗(1 +
𝜃𝑥

1 + 𝜃
)𝑗𝑒−𝑗𝜃𝑥                        (23) 

∞

𝑗=0

 

Similarly, using the expansion (1 + 𝑏)𝑛 = ∑ (
𝑗
𝑖
) 𝑏𝑖 ,∞

𝑖=0  we can have 

    (1 +
𝜃𝑥

1 + 𝜃
)𝑗 = ∑ (

𝑗
𝑖
) (

𝜃

1 + 𝜃
)

𝑖

𝑥𝑖                                             (24) 

∞

𝑖=0

 

Substitute (23) and (24) into (22), gives us  

 �́�𝑟 =  
𝜃2(𝑝 − 1)

(𝜃 + 1) ln 𝑝 
∑ ∑ (

𝑗
𝑖
) (1 − 𝑝)𝑗(

𝜃

1 + 𝜃
)𝑖 ∫ (𝑥𝑟+𝑖

∞

0

∞

𝑖=0

∞

𝑗=0

+ 𝑥𝑟+𝑖+1)𝑒−(𝑗+1)𝜃𝑥𝑑𝑡                                         (25) 

Finally, evaluating the integral 

∫ (𝑥𝑟+𝑖 + 𝑥𝑟+𝑖+1)𝑒−(𝑗+1)𝜃𝑥𝑑𝑡 
∞

0

 

and doing  the necessary simplifications the 𝑟𝑡ℎ non-central moment of the 

Logarithmic- Lindley distribution can be written as 

                                            �́� =
(𝑝 − 1)

𝜃𝑟 ln 𝑝
  

Depending on (26), we can conclude the basic statistical properties as 

follows; 

(𝑖) The mean, 𝜇1́  = 𝜇, and the variance, 𝑉𝑎𝑟(𝑋), of the Logarithmic- 

Lindley random variable 𝑋 are, respectively, given by 
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  𝜇 =
(𝑝 − 1)

𝜃 ln 𝑝
∑ ∑[

𝑗! (1 − 𝑝)𝑗[𝜃(𝑗 + 1) + 𝑖 + 2](𝑖 + 1)

(1 + 𝜃)𝑖+1(𝑗 + 1)𝑖+3(𝑗 − 𝑖)!

∞

𝑗=0

],             (27)

∞

𝑖=0

 

and           

𝑉𝑎𝑟(𝑋)  =  𝜇2́  −  𝜇1́ 

where 𝜇2́ is the second non-central moment and given by 

  𝜇2́ =
(𝑝 − 1)

𝜃2 ln 𝑝
∑ ∑[

𝑗! (1 − 𝑝)𝑗[𝜃(𝑗 + 1) + 𝑖 + 3](𝑖 + 2)(𝑖 + 1)

(1 + 𝜃)𝑖+1(𝑖 + 1)𝑖+4(𝑗 − 𝑖)!

∞

𝑗=0

𝑗

𝑖=0

]     (28) 

(𝑖𝑖) The 𝑛𝑡ℎ central moments 𝜇𝑛can be obtained easily from the 

𝑟𝑡ℎ moments through the relation 

𝜇𝑛 = 𝐸(𝑥 − 𝜇)𝑛 =  ∑(
𝑛
𝑟

)(−𝜇)𝑛−𝑟�́�𝑟.

𝑛

𝑟=0

 

Then the 𝑛𝑡ℎ central moments of the Logarithmic-Lindley distribution are 

given by 

                            𝜇𝑥

=
(𝑝 − 1)

ln 𝑝
∑ ∑ ∑ [

(
𝑗
𝑖
) 𝑡3(1 − 𝑝)𝑗[𝜃(𝑗 + 1) + 𝑟 + 𝑖 + 1](𝑟 + 𝑖)

𝜃3(1 + 𝜃)𝑖+1(𝑗 + 1)𝑟+𝑖+2 𝑟!
]   (29)

∞

𝑗=0

∞

𝑖=0

∞

𝑟=0

 

4.3 The Quantiles 

Let 𝑋 be a random variable with cdf associated with (9). Then, the quantile 

function, 𝑥𝑞, defined by 𝐹 (𝑥𝑞)  =  𝑞 is the root of the equation 

 (
𝜃 + 1 + 𝜃𝑥𝑞

𝜃 + 1
) 𝑒−𝜃𝑥𝑞 = (

1 − 𝑝1−𝑞

1 − 𝑝
) , 0 < 𝑞 < 1.                                  (30) 

Substituting, 𝑦𝑞 =−1−𝜃−𝜃𝑥𝑞,we can we can rewrite (30) as 

  𝑦𝑞𝑒𝑦𝑞 = −(𝜃 + 1)𝑒−(𝜃+1) (
1 − 𝑝1−𝑞

1 − 𝑝
) , 0 < 𝑞 < 1                           (31) 

Hence, the solution of 𝑦𝑞is  

  𝑦𝑞=𝑊(−(𝜃+1)𝑒−(𝜃+1)(
1 − 𝑝1−𝑞

1 − 𝑝
)),0 < 𝑞 < 1,                                         (32) 

where 𝑊(. ) is the Lambert W function, see Corless et al. (1996) for more 

details about the properties of the Lambert W function? Inverting (32), one 

has 
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 𝑥𝑞 = −1 −
1

𝜃
−

1

𝜃
𝑊 (−(𝜃 + 1)𝑒−(𝜃+1) (

1 − 𝑝1−𝑞

1 − 𝑝
)) ,    0 < 𝑞 < 1.    (33) 

Remark 1 A particular case of (33) at 𝑝 →  1 gives the quantile function of 

the Lindley distribution; see Jodra (2010), as 

  𝑥𝑞 = −1 −
1

𝜃
−

1

𝜃
𝑊 (−(𝜃 + 1)𝑒−(𝜃+1)(1 − 𝑞)).                                (34) 

When q=0.5 in (33), one can obtain the median of the distribution as 

                    𝑥0.5 = −1 −
1

𝜃
−

1

𝜃
𝑊 (

−(𝜃 + 1)𝑒−(𝜃+1)

1 + √𝑝
),                        (35) 

A series expansion for (33) around q = 1 can be obtained as 

                                        𝑥𝑞 = −1 −
1

𝜃
−

1

𝜃
∑

(−𝑛)𝑛−1

𝑛!

∞

𝑛=1  

                       (36) 

where 𝑧 = −(𝜃 + 1)𝑒−(𝜃+1)(
1−𝑝1−𝑞

1−𝑝
) These kind of expansions for com-

puting W(.) are widely available, for example, ProductLog[.] in R software. 

5 Distribution of Order Statistics 

 Let 𝑋1𝑋2 … … 𝑋𝑛 denote n independent random variables from a distribution 

function 𝐹𝑋(𝑥)  =  1 — 𝐹𝑋 (𝑥) with pdf 𝑓𝑥(𝑥), and then the pdf of 

𝑋(𝑗) (the j order sample arrangement) is given by 

 𝑓(𝑥)(𝑗)(𝑥) =
𝑛!

(𝑗 − 1)! (𝑛 − 𝑗)!
𝑓𝑋(𝑥)[𝐹𝑋(𝑥)]𝑗−1[1 − 𝐹𝑋(𝑥)]𝑛−𝑗,

𝑗 = 1,2, …                                                                (37) 

Using (8) and (9) into (37), then the pdf of X j according to the Log-L 

distribution is given by  

𝑓(𝑥)(𝑗)(𝑥) =
𝑛!

(𝑗 − 1)! (𝑛 − 𝑗)! ln(𝑝)
[

(𝑝 − 1) (
𝜃2

𝜃 + 1) (1 + 𝑥)𝑒−𝜃𝑥

1 − (1 − 𝑝) (
𝜃 + 1 + 𝜃𝑥

𝜃 + 1)
) 𝑒−𝜃𝑥

], 

× [1 −
[ln[1 − (1 − 𝑝)(

𝜃 + 1 + 𝜃𝑥
𝜃 + 1 )𝑒−𝜃𝑥]

ln(𝑝)
]𝑗−1,   

× [
ln[ 1 − (1 − 𝑝)(

𝜃 + 1 + 𝜃𝑥
𝜃 + 1 )𝑒−𝜃𝑥]

ln 𝑝
]𝑛−1,                .        (38) 

Libyan Society For Educational Sciences

Al Qortas Journal is Reviewed Scientific Journalمجلة القرطاس 42



  

Therefore, the pdf of the largest order statistic 𝑋(𝑛)and the smallest order 

statistic 𝑋(1) are, respectively, given by 

       𝑓𝑥(𝑛)(𝑥) =
𝑛

ln 𝑝
[

(𝑝 − 1) (
𝜃2

𝜃 + 1) (1 + 𝑥)𝑒−𝜃𝑥

1 − (1 − 𝑝) (
𝜃 + 1 + 𝜃𝑥

𝜃 + 1 ) 𝑒−𝜃𝑥
] [1

−
ln[1 − (1 − 𝑝)(

𝜃 + 1 + 𝜃𝑥
𝜃 + 1 )𝑒−𝜃𝑥

ln(𝑝)
]

𝑛−1

         (39) 

and  

𝑓𝑥(1)(𝑥) =
𝑛

ln 𝑝
[

(𝑝 − 1) (
𝜃2

𝜃 + 1) (1 + 𝑥)𝑒−𝜃𝑥

1 − (1 − 𝑝) (
𝜃 + 1 + 𝜃𝑥

𝜃 + 1 ) 𝑒−𝜃𝑥
] 

[
ln[1 − (1 − 𝑝)(

𝜃 + 1 + 𝜃𝑥
𝜃 + 1 )𝑒−𝜃𝑥

ln(𝑝)
]

𝑛−1

          (40) 

6 Measures of Inequality and Uncertainty  

In this section, Lorenz and Bonferroni curves are introduced as measures of 

inequality. Also, Renyi entropy will be mentioned as an important measure 

of uncertainty. 

6.1 Lorenz and Bonferroni curves 

Lorenz and Bonferroni curves are the most widely used inequality measures 

in income and wealth distribution (Kleiber, 2004). In fact, Lorenz and 

Bonferroni curves are depending on the length-biased distribution with pdf 

𝑓∗(𝑥) defined by 

 𝑓∗(𝑥) =
𝑥. 𝑓(𝑥)

𝜇
, 

where 𝑓(𝑥) is the pdf of the base distribution with mean 𝜇. 

Accordingly, Lorenz and Bonferroni curves, denoted by 𝐿(𝑥) and 𝐵(𝑥) 

respectively, are defined by 

  𝐿(𝑥) =
𝑓∗(𝑥)

𝜇
,               𝑎𝑛𝑑               𝐵(𝑥) =

𝑙(𝑥)

𝑓(𝑥)
,             (41) 

where, 𝐹∗(𝑥) cdf of the length-biased distribution. 
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Now, we shall derive the expressions of 𝐿(𝑥) and 𝐵(𝑥) based on 𝐹∗(𝑥) and 

𝐹∗(𝑥) for Log-L distribution.  It is easily shown that the pdf of the length 

biased distribution according to the Log-L distribution can be obtained as 

follows. 

                                𝑓∗(𝑥, 𝜃, 𝑝) =
𝑥. 𝑓∗(𝑥, 𝜃, 𝑝)

𝜇

=
𝜃2(𝑝 − 1)

𝜇(𝜃 + 1)In(𝑝)
[

(𝑥 + 𝑥2)𝑒−𝜃𝑥

1 − (1 − 𝑝)(
𝜃 + 1 + 𝜃𝑧𝑖)𝑒−𝜃𝑥

𝜃 + 1

]                                      (42) 

Which cdf, 𝐹∗(𝑥), given by 

              𝐹∗(𝑥), =
(𝑝 − 1)

𝜃𝜇 𝐼𝑛𝑝
∑ ∑

(
𝑗
𝑖
) (1 − 𝑃)𝑗

(1 + 𝜃)𝑖+1(𝑗 + 1)𝑖+3

∞

𝑗=0

∞

𝑖=0

[𝜃(𝑗 + 1)𝛾(𝑖

+ 2, 𝜃(𝑗 + 1)𝑥) + 𝛾(𝑖 + 3, 𝜃)𝑗 + 1)𝑥]                    (43) 

  where γ(.,.)  is the lower incomplete gamma function ,defined by    

𝛾(𝑎, 𝑏) = ∫ 𝑢𝑎−1𝑒−𝑢 𝑑𝑢
𝑏

𝑎
  

It follow from (8) ,(41) and, (43) that L(x) and B( r) are 

               𝐿(𝑥) =
(𝑝 − 1)

𝜃𝑢2 𝐼𝑛𝑝
∑ ∑

(
𝑗
𝑖
) (1 − 𝑃)𝑗

(1 + 𝜃)𝑖+1(𝑗 + 1)𝑖+3

∞

𝑗=0

∞

𝑖=0

[𝜃(𝑗 + 1)𝛾(𝑖

+ 2, 𝜃(𝑗 + 1)𝑥) + 𝛾(𝑖 + 3, 𝜃)𝑗 + 1)𝑥]                    (44) 

and 

                B(x) =
(𝑝 − 1)

𝜃𝑢2 [ 𝐼𝑛 𝑝 − 𝐼𝑛 (1 − (1 − 𝑝 (
𝜃 + 1 + 𝜃𝑥𝑖)

𝜃 + 1 ) 𝑒−𝜃𝑥𝑖)]
 

                        × ∑ ∑
(

𝑗
𝑖
) (1 − 𝑃)𝑗

(1 + 𝜃)𝑖+1(𝑗 + 1)𝑖+3

∞

𝑗=0

∞

𝑖=0

[𝜃(𝑗 + 1)𝛾(𝑖 + 2, 𝜃(𝑗 + 1)𝑥)

+ 𝛾(𝑖 + 3, 𝜃(𝑗 + 1)𝑥)]                                                    (45) 

6.2 Renyi Entropy 

If 𝑋 is a random variable having an absolutely continuous cdf  𝐹(𝑥) and pdf 

𝑓(𝑥), then the basic uncertainty measure for distribution F (called the entropy of 

F) is defined as [𝑇(𝑥)  =  𝐸[— 𝑙𝑛(𝑓 (𝑥))]. Statistical entropy is a probabilistic 
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measure of uncertainty or ignorance about the outcome of a random experiment, 

and is a measure of a reduction in that uncertainty. Abundant entropy and 

information indices, among them the Renyi entropy, have been developed and 

used in various disciplines and contexts. Information theoretic principles and 

methods have become integral parts of probability and statistics and have been 

applied in various branches of statistics and related fields. 

Renyi entropy is an extension of Shannon entropy. Renyi entropy of the 

Logarithmic-Lindley distribution is defined to be  

            𝛾𝑣(𝑓(𝑥, 𝜃, 𝑝) =
ln(∫ 𝑓𝑣∞ 

0
(𝑥, 𝜃, 𝑝)𝑑𝑡)

1 − 𝑣
                  (46) 

where 𝑣 >  0 𝑎𝑛𝑑 𝑣 =  1. Renyi entropy tends to Shannon entropy as v → 1. 

Now  

                                          ∫ 𝑓𝑣
∞

0

(𝑥, 𝜃, 𝑝)𝑑𝑟

= (
𝜃2(𝑝 − 1)

(𝜃 + 1)𝐿𝑛𝑝 
)𝑣 ∫

(1 + 𝑥)𝑣𝑒−𝑣𝜃𝑥

[1 − (1 − 𝑝) (
𝜃𝑥

𝜃 + 1)𝑒−𝜃𝑥]
𝑣 𝑑𝑥

∞

0

       (47) 

 

Using the following expansions 

[1 − (1 − 𝑝) (1 +
𝜃𝑥

𝜃 + 1
) 𝑒−𝜃𝑥]

𝑣

= ∑ ∑ (
𝑣 + 𝑗 − 1

𝑗
) (

𝑗

𝑖
)

∞

𝑖=0

∞

𝑗=0

(1 − 𝑝)𝑗(
𝜃

𝜃 + 1
)𝑖𝑥𝑖𝑒−𝑗𝜃𝑥        (48) 

and 

             (1 + 𝑥)𝑣 = ∑ (
𝑣

𝑘
) 𝑥𝑘

∞

𝑘=0

                           (49) 

  Then, (47) cab be written follows 

   ∫ 𝑓𝑣
∞

0

(𝑥, 𝜃, 𝑝)𝑑𝑟 = (
𝜃2(𝑝 − 1)

(𝜃 + 1)ln (𝑝) 
)𝑣 

× ∑ ∑ ∑(
𝑣
𝑘

)(
𝑣 + 𝑗 − 1

𝑗
)(

𝑗
𝑖
)(1 − 𝑝)𝑗(

∞

𝑖=0

𝜃

𝜃 + 1
) ∫ 𝑥𝑖+𝑘

∞

0

𝑒

∞

𝑘=0

∞

𝑗=0

− (𝑗 + 𝑣)𝜃𝑥𝑑𝑥                                                  (50) 
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Evaluating the integral in (50) using the gamma function. Then, collecting 

all of the above evaluations and substituting in (46), the Renyi entropy of 

the Logarithmic-Lindley distribution can be defined as 

   𝑟𝑣(𝑓(𝑥, 𝜃, 𝑝)) = 𝑣ln (
𝑝 − 1 

ln (𝑝)
)

+ ln [∑   

∞

𝑗=0

∑  

∞

𝑘=0

∑
(𝑣

𝑘
) (𝑣+𝑗+1)

𝑗
) (𝑗

𝑖
)𝜃2𝑣−𝑘−1(1 − 𝑝)𝑗(𝑖 + 𝑘)𝑖

(𝜃 + 1)𝑣+1(𝑗 + 𝑣)𝑖+𝑘+1

∞

𝑖=0

] (51) 

7 Estimation of the Parameters  

In this section we introduce the method of likelihood to estimate the para-

meters involved and use them to create confidence intervals for the unknown 

parameters, then gives the equation used to estimate the parameters using the 

maximum product spacing estimates and the least square estimates 

techniques. 

7.1 Maximum Likelihood Estimation Method 

Let X1, X2, ..., Xn be a sample size n from Logarithmic-Lindley distribution. 

Then the likelihood function (1) is given by 

   ∏ 𝑓𝑖(𝑥)

𝑛

𝑖=1

= (
1

ln 𝑝
)

𝑛

(𝑝

− 1)𝑛 (
𝜃2

𝜃 + 1
)

𝑛
∏ (1 + 𝑥𝑖)𝑒 − 𝜃 ∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
𝑖=1

∏ [1 − (1 − 𝑝) (
𝜃 + 1 + 𝜃𝑥𝑖)

𝜃 + 1 ) 𝑒−𝜃𝑥𝑖]𝑛
𝑖=1

            (52) 

Hence, the log-likelihood function ℒ= ln 1 becomes 

   ℒ = −𝑛 ln[ln 𝑝] + 𝑛 ln(𝑝 − 1) + 𝑛 ln(
𝜃2

𝜃 + 1
)

+  ∑ ln(1 + 𝑥𝑖) − 𝜃  ∑ 𝑥𝑖

n

i=1

𝑛

𝑖=1

 

              − ∑ ln [1 − (1 − 𝑝)(
𝜃 + 1 + 𝜃𝑥𝑖

𝜃 + 1

𝑛

𝑖=1

)𝑒−𝜃𝑥𝑖]                   (53) 

Therefore, the maximum likelihood estimators (MLEs) of d and p are 
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derived from the derivatives of L.  They should satisfy the following equa-

tions 

 
𝜕ℒ

𝜕𝜃
=

𝑛(𝜃 + 2)

𝜃(𝜃 + 1)
− ∑ 𝑥𝑖 + ∑

𝑥𝑖[1 − (𝜃 + 1)(𝜃 + 1 + 𝜃𝑥𝑖)]𝑒−𝜃𝑥𝑖

(𝜃 + 1)

𝑛

𝑖=1

𝑛

𝑖=1

= 0                                                                            (54) 

and 

     
𝜕ℒ

𝜕𝑝
=

−𝑛

𝑝 ln 𝑝
+

𝑛

(𝑝 − 1)
− ∑[

(𝜃 + 1 + 𝜃𝑥𝑖)𝑒−𝜃𝑥𝑖

1 − (1 − 𝑝) (
𝜃 + 1 + 𝜃𝑥𝑖

𝜃 + 1 ) 𝑒−𝜃𝑥𝑖

𝑛

𝑖=1

 ]

= 0                                                                                   (55)      

To solve the Equations (54) and (55), it is usually more convenient to use 

nonlinear optimization algorithms such as quasi-Newton algorithm to 

numerically maximize the log-likelihood function. In order to compute the 

standard errors and asymptotic confidence intervals we use the usual large 

sample approximation, in which the MLEs can be treated as being approx-

imately trivariate normal. Hence as n! 1, the asymptotic distribution of the 

MLE is given by, see Zaindin et al. (2009): 

(
𝜃

�̂�
) ~Normal [(

𝜃

𝑝
) , (

𝑣11

𝑣21
    

𝑣12

𝑣22
)] 

where 𝑣ij  𝑣ij  |𝜃 = 𝜃 𝑎𝑛𝑑 

(
𝑣11

𝑣21
    

𝑣12

𝑣22
) = (

𝐴11

𝐴21
    

𝐴12

𝐴22
) 

is the approximate variance-covariance matrix with its elements obtained 

from 

𝐴11 =
𝜕2ℒ

𝜕𝜃2    
,     𝐴12 =

𝜕2ℒ

𝜕𝜃𝜕𝑝ℒ    
     and              𝐴22 =

𝜕2ℒ

𝜕𝑝2    
 

By solving this inverse dispersion matrix, these solutions will yield the 

asymptotic variances and covariances of these MLEs for 𝜃 and 𝑝. 

Approximate 100(1 - a)% confidence intervals for 9 and p can be determined 

as 

𝜃 ± 𝑍∝
2

 √𝑣11      and     𝑝 ̂ ∓ 𝑍∝
2

√𝑣22. 

where 𝑍∝

2
 is the upper ath percentile of the standard normal distribution. 
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7.2 Maximum Product Spacing Estimates 

The maximum product spacing (MPS) method has been proposed by Cheng 

and Amin (1983). This method is based on an idea that the differences 

(spacings) of the consecutive points should be identically distributed. The 

geometric mean of the differences is given as 

       GM = √∏ 𝐴𝐷𝑖
𝑛+1
𝑖=1

𝑛+1
               (56)                      

where is difference Di is defined as 

     𝐷𝑖 = ∫ 𝑓(𝑥, 𝜃, 𝑝)𝑑𝑥; 𝑖 = 1,2, … . . , 𝑛 + 1
𝑥(𝑖)

𝑥(𝑖−1)
   (57)                

Where, 𝐹(𝑥(0), 𝜃, 𝑝) =0 and 𝐹(𝑥(𝑛 + 1), 𝜃, 𝑝) = 1. The MPS estimators 𝜃𝑃𝑆   

and 𝑝𝑃𝑆 of 𝜃 and 𝑝 are obtained by maximizing the geometric mean (GM) of 

the differences. substituting pdf of Logarithmic-Lindley distribution in (57) 

and taking logarithm of the above expression, one can have. 

    log 𝐺𝑀 =
1

𝑛 + 1
∑ log  [𝐹(𝑥(𝑖), 𝜃, 𝑝) − 𝐹(𝑥(𝑖−1), 𝜃, 𝑝)]     (58)

𝑛+1

𝑖=1

 

 The MPS estimator 𝜃𝑃𝑆   and 𝑝𝑃𝑆 of 𝜃 and 𝑝  can be obtained as the 

simultaneous solution of the following non- linear equations.  

𝜕 log 𝐺𝑀

𝜕𝜃
=

1

𝑛 + 1
∑[

𝐹�́�(𝑥(𝑖), 𝜃, 𝑝 − �́�𝜃(𝑥(𝑖−1),𝜃,𝑝

𝐹�́�(𝑥(𝑖), 𝜃, 𝑝 − 𝐹𝜃(𝑥(𝑖−1),𝜃,𝑝

𝑛+1

𝑖=1

 ] = 0,  

 

𝜕 log 𝐺𝑀

𝜕𝑝
=

1

𝑛 + 1
∑[

𝐹�́�(𝑥(𝑖), 𝜃, 𝑝 − �́�𝑝(𝑥(𝑖−1),𝜃,𝑝

𝐹�́�(𝑥(𝑖), 𝜃, 𝑝 − 𝐹𝑝(𝑥(𝑖−1),𝜃,𝑝

𝑛+1

𝑖=1

 ] = 0,  

 

7.3 Least Square Estimates 

Let x(1), x(2),..., x(n) be the ordered sample of size n drawn from the 

Logarithmic-Lindley population pdf. Then, the expectation of the empirical 

cumulative distribution function is defined as 

   𝐸[𝐹(𝑋(𝑖))] =
𝑖

𝑛 + 1
; 𝑖 = 1,2, … … … 𝑛     (59) 

The least square estimates (LSEs) 𝜃LS and 𝑝𝐿𝑆 of  𝜃 and 𝑝 are obtained by 

minimizing 
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𝑍(𝜃, 𝑝) = ∑ (𝐹(𝑥𝑖), 𝜃, 𝑝) −
𝑖

𝑛 + 1
)

2𝑛

𝑖=1

 

Therefore,  𝜃LS and 𝑝𝐿𝑆 of  𝜃 and 𝑝 can be obtained as the solution of the 

following system of equations 

  

𝜕𝑍(𝜃, 𝑝)

𝜕𝜃
= ∑ 𝐹𝜃́ (𝑋(𝑖)𝜃, 𝑝) (𝐹(𝑋(𝑖)𝜃, 𝑝) −

𝑖

𝑛 = 1
) = 0,

𝑛

𝑖=1

 

and 

𝜕𝑍(𝜃, 𝑝)

𝜕𝑝
= ∑ 𝐹�́�(𝑋(𝑖)𝜃, 𝑝) (𝐹(𝑋(𝑖)𝜃, 𝑝) −

𝑖

𝑛 = 1
) = 0,

𝑛

𝑖=1

 

Theses non-linear equations can be routinely solved by using Newton's 

method or fixed point iteration techniques. The subroutines to solve nonlinear 

optimization problem are available in R software namely optim (), n/m () and 

bfrm/e () etc., see Team (2012). We used n/m () package for optimizing 

Equations (53) and (58). 

8 Applications 

In this section, we use two real data sets to show that the Logarithmic- 

Lindley distribution can be better than one based on the Lindley distribution 

and other non-nested models such as Lindley-exponential by Bhatti (2014), 

new generalized Lindley (NGL) distribution by Elbatal et al. (2013), Weibull 

distribution by Weibull (1939) and weighted Lindley distribution by Ghitany 

et al. (2011). 

8.1 Data Set 1 

The first data set represents an uncensored data set corresponding to remis-

sion times (in months) of a random sample of 128 bladder cancer patients 

reported in Lee and Wang (2003). In order to compare the six distribution 

models, we consider criteria like A/C (Akaike information criterion), A/CC 

(corrected Akaike information criterion) and B/C (Bayesian information 

criterion) for the data set. The better distribution corresponds to smaller A/C, 

A/CC and B/C values: 

𝐴𝐼𝐶 = 2𝑘 − 2𝑖,

𝐴𝐼𝐶𝐶 = 𝐴𝐼𝐶 =
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
𝑎𝑛𝑑  𝐵𝐼𝐶 = 21 + 𝐾 ∗ log(𝑛)   
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where k is the number of parameters in the statistical model, n the sample 

size and r is the maximized value of the log-likelihood function under the 

considered model. 

The LR test statistic to test the hypotheses Ho : p = 1 versus H1 : p = 1 is ! = 

14.032 > 7.815 = xi 05, so we reject the null hypothesis. Table 1 shows 

parameter MLEs to each one of the six fitted distributions for data set with 

95% confidence interval, while Table 3 represents the values of - log(L), 

AIC, BIC and AICC. 

The values in Table 2, indicate that the Logarithmic-Lindley is a strong 

competitor to other distributions used here for fitting data set. A density plot 

compares the fitted densities of the models with the empirical histogram of 

the observed data (Fig. 3). The fitted density for the Logarithmic-Lindley 

model is closer to the empirical histogram than the fits of the other models. 

TABLE 1. Maximum likelihood estimates with 95% CI for data set1 

Model Parameter Es. St. Err. 95% CI 

Logarithmic-Lindley 
0.1238 0.0186 [0.0872, 0.1604] 

0.0979 0.0472 [0.0053, 0.1906] 

Lindley- Exponential 
0.1093 0.0137 [0.0824, 0.1363] 

1.5687 0.1638 [1.2476, 1.8898] 

NGL 

0.1827 0.0355 [0.1130, 0.2525] 

4.6807 1.3080 [2.1169, 7.2445] 

1.3243 0.1718 [0.9874, 1.6611] 

Weibull 
1.0478 0.0676 [0.9153,1.1803] 

0.1045 0.0093 [0.0862, 0.1229] 

Weighted Lindley 
0.1594 0.0172 [0.1257, 0.1931] 

0.6827 0.1115 [0.4640, 0.9014] 

Lindley 0.1960 0.0123 [0.1718, 0.2202] 

 

 

 

 

 

Libyan Society For Educational Sciences

Al Qortas Journal is Reviewed Scientific Journalمجلة القرطاس 50



  

TABLE 2. - log L, AIC, AICC, BIC, KS statistics values under considered 

models based on data set 1. 

Model - log L AIC AICC BIC KS 

Logarithmic-Lindley 411.7701 827.5403 827.6363 833.2443 0.0619 

Lindley- 

Exponential 
412.0493 828.0985 828.1945 833.8026 0.0621 

NGL 412.7503 831.5006 831.6942 840.0567 0.0740 

Weibull 414.0869 832.1738 832.2698 837.8778 0.0701 

Weighted Lindley 416.4422 836.8845 836.9805 842.5885 0.0925 

 

  
(a) (b) 

FIGURE 3. (a) Estimated densities of data 

set 1. (b) Empirical, Logarithmic-Lindley, 

Lindley, Weibull, Lindley-exponential, NGL, 

and Weighted Lindley cdf of data set 1. 
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FIGURE 4. Probability plots for the …ts of 

the Logarithmic-Lindley, Lindley, Weibull, 

Lindley-exponential, weighted Lindley and 

NGL distributions of data set 1. 

8.2 Data Set 2 

The data represents 46 repair times (in hours) for an airborne communication 

transceiver and available in Chhikara and Folks (1977). 

The LR test statistic to test the hypotheses H0: p = 1 versus H1 : p = 1 is ! = 

8.3546 > 3.841 = x1 -0:05, so we reject the null hypothesis. 

Table 3 shows parameter MLEs to each one of the six fitted distributions for 

data set 2 with 95% confidence interval, while Table 4 represents the values 

of - log(L), AIC, BIC and AICC. 

TABLE 3. Maximum likelihood estimates with 95% CI for data set2 
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Model 
Parameter 

Es. 
St. Err. 95% CI 

Logarithmic-Lindley 
0.2473 0.0640 [0.0872, 0.1604] 

0.0694 0.0313 [0.0080, 0.1307] 

Lindley- Exponential 

0.242675 
0.05649785 

[0.1319393, 

0.3534108] 

1.460206 0.2715473 [0.9279731, 1.992438] 

NGL 

 0.3552648 
0.1721713 

[0.01780907, 

0.6927206] 

 3.089682 3.338087 [2.02514, 9.632333] 

 1.058484 0.2930719 [0.4840632, 7.601135] 

Weibull 

 0.960359 0.06812665 [0.8268308, 1.093887] 

 0.2546432 
0.1467211 

[0.02586985, 

0.4834164] 

Weighted Lindley 
 0.3551453 0.06812665 [0.221617,0.4886735] 

 0.7471963 0.1867211 [0.381223,1.11317] 

Lindley  0.4242097 0.04852818 [0.3290945, 0.519325] 

The values in Table 4, indicate that the Logarithmic-Lindley is a strong 

competitor to other distributions used here for fitting data set. 

A density plot compares the fitted densities of the models with the empirical 

histogram of the observed data (Fig. 5). The fitted density for the Logarithmic-

Lindley model is closer to the empirical histogram than the fits of the Lindley 

distribution and other non-nested models. 

TABLE 4. - log L, AIC, AICC, BIC, KS statistics values under 

considered models based on data set 2. 

Model - log L AIC AICC BIC KS 

Logarithmic-Lindley 94.39982 192.7996 193.124 196.1774 0.1212 

Lindley- 

Exponential 
94.614 193.2284 193.5527 196.6062 01488 

NGL 96.13662 198.2732 198.9399 203.3399 0.1621635 

Weibull 95.51136 195.0227 195.0347 198.4005 0.1224559 

Weighted Lindley 98.04943 200.0989 200.4232 203.4766 0.1722701 

Lindley 98.79132 199.5826 199.6879 201.2715 0.2156951 
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(a) (b) 

FIGURE 5. (a) Estimated densities of data set 1. 

(b) Empirical, Logarithmic-Lindley, Lindley, 

Weibull, Lindley-exponential, NGL, and 

weighted Lindley cdf’s of data set 2. 
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FIGURE 6. Probability plots for the 

Logarithmic-Lindley, Lindley, Weibull, 

Lindley-exponential, weighted Lindley and 

NGL distributions of data set 2. 

9 Conclusion  

Here, we propose a new model, the so-called the Logarithmic-Lindley dis-

tribution which extends the Lindley distribution in the analysis of data with 

real support. An obvious reason for generalizing a standard distribution is 

because the generalized form provides larger flexibility in modeling real data. 

We derive expansions for the moments, moment generating function, hazard 

rate function, reversed hazard rate function, cumulative hazard rate function, 

mean residual lifetime distribution, quantiles, Lorenz curves, Bonferroni 

curves and Renyi entropy. The distribution of order statistics is presented 
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according to the proposed model. The estimation of parameters is approached 

by the methods of maximum likelihood, maximum product spacing's and 

least squares, also the information matrix is derived. We consider the 

likelihood ratio statistic to compare the model with its baseline model. Two 

applications of the Logarithmic-Lindley distribution to real data show that 

the new distribution can be used quite effectively to provide better fits than 

the Lindley distribution and other non-nested models such as Lindley-

exponential, weighted Lindley, Weibull and new generalized Lindley 

distributions. Finally, we followed our work by a simulation algorithms and 

study. 
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